啤岭机电设备(上海)有限公司

滚动轴承故障诊断的几种监测方法的分析

2018-07-17

  摘 要:滚动轴承故障诊断的方法很多,除了振动信号进行分析诊断外,还发展了其他一些技术,如光纤维监测技术、油污染分析法(光谱测定法、磁性磁屑探测法和铁谱分析法等)、声发射法、电阻法等,这些方法在工作中,根据现场实际工况,决定应用方法,解决具体问题。
  关键词:滚动轴承;故障诊断;监测方法
  一、光纤维监测诊断法
  精密轴承对轴的回转精度要求极高,如果回转运动误差过大系统就无法正常运转,即认为出现了故障。根据现场实际工况采用光纤监测技术进行滚动轴承故障诊断。其指标主要包括有效值、峰值有效值比、轴承速率比等。
  (1)有效值φx
  轴承由于其制造缺陷,如表面粗糙度、波纹度和圆度误差等,会形成不规则的轮廓,运行时就会产生振动。这一振动由光纤传感器接收后,即可得图1所示的φx脉动波形。
图1 均方根幅值的变化反映轴承制造质量的不同
图2 滚动轴承的BSR值
  图1(a)为一个接近理想的高精度电动机轴承形成的波形,其套圈的弹性变形接近简谐波形,其波数等于通过测点的钢球数目;图1(b)为精度级Z低的轴承形成的复杂波形,这种轴承不但表面粗糙度大,几何形状误差大,而且钢球直径也有明显不同。由此可见,可用光纤传感器直接检测在用轴承的质量,这是一种简单而有效的测试方法。
  (2)峰值有效值比XP/φx
  对于经过一段时间运行的滚动轴承,其工作表面会由于磨损而变得粗糙。虽然此时轴承表面粗糙状况也可以用上述有效值指标来表示,但是当轴承零件上有局部的剥落、凹坑一类缺陷时,有效值就无法反映出来。这时通过峰值有效值比则可以明显地反映出来。一般来说,当XP/φx>1.5时,就认为轴承零件上有局部缺陷产生。
  (3)轴承速率比BSR
  轴承速率比BSR定义为钢球通过频率与轴的回转频率之比,它取决于轴承的载荷和间隙的大小以及轴承的润滑状况,图2为BSR值与轴承载荷的关系。图中的阴影部分是轴承正常工作时的BSR值,当BSR值偏高时,则可能是载荷高、润滑不良或者轴承间隙过大;当BSR值偏低时,则可能是载荷不足、润滑过多(例如润滑脂加注过多)或者轴承间隙过小。由此可见,BSR值是反映轴承运行性能的直接指标。
  二、轴承润滑状态监测诊断法
  当轴承滚动表面的润滑状态发生改变时,例如从完全液体润滑到干摩擦时,金属间直接接触的时间所占比例上升,冲击脉冲值也会上升,油膜电阻会下降。针对这种现象,实际工作中常用以下两种监测方法。
  1.油膜厚度法
  对实际运转的机械,其油膜厚度测量是非常困难的。理论研究和试验表明,油膜厚度可以用冲击脉冲值间接测量表示。这种分析诊断方法的优点是能够精确分析诊断出轴承的状态,但缺点是操作使用比较复杂,需要输入大量参数,因而在现场使用中有时会觉得不如原来的冲击脉冲法方便。
  2.油膜电阻诊断法
  滚动轴承在旋转过程中,如果在滚道面和滚动体之间能够形成良好的油膜,则内圈和外圈之间的电阻值很大,可达兆欧以上;当润滑膜破坏时,则内圈和外圈之间的电阻值可降至零欧附近。利用这一特性,便可对滚动轴承的润滑状态及与此有关的磨损、腐蚀之类的损伤进行诊断,但不适用于点蚀类损伤的诊断。
  油膜电阻法的测量分析原理是:在内、外圈之间加1V左右的直流电压,通过测量轴承处的电压降来确定其阻值。
  用油膜形成度R和轴承上的电压V两个参数来监测轴承的润滑状态。当油膜形成不完全时会发生金属间接触,以发生金属间接触的时间与不发生接触的时间之比来表示油膜形成度(0~10)。如前所述,当油膜形成良好时,不发生电接触时间所占比例会比较高,此时滚动表面阻抗会比较高;反之则比较低。
  使用V方式时,可以测量由于轴承转动时诱发出来的电压,此电压过高会导致电腐蚀,缩短轴承寿命。
  可以用R和V的综合评价图来判定轴承的润滑状态(图3),根据R和V的值分为良好、警戒和危险三个区。
图3 润滑状态监测仪
  这种轴承润滑状态监测仪具有如下优点:(1)可在运转中测定润滑状态;(2)轴承的类型及尺寸大小对测定影响不大;(3)小型轻便。其缺点是:(1)不适用于转速过低且在正常情况下也无法形成油膜的情况;(2)在轴承以外的地方有电气短路时不能使用;(3)同一承载处有两个以上轴承时不能做出Z终具体判断。
  三、油液分析诊断
  滚动轴承失效的主要方式是磨损、断裂和腐蚀等,其原因主要是润滑不当,因此对运行时使用的润滑油进行系统分析,即可了解轴承的润滑与磨损状态,并对各种故障隐患进行早期预报,查明产生故障的原因和部位,及时采取措施防止恶性事故的发生。
  油液分析应采用系统的方法,只采用单一手段往往会因其局限性而导致不全面的诊断结论,容易产生漏报或误报。实践证明,由以下五个方面,即理化分析、污染度测试、发射光谱分析、红外光谱分析、铁谱分析构成的油液分析系统在设备状态监测与故障诊断工作中可以发挥重要作用,其诊断结果与现场实际基本吻合,具有显著的经济效益与社会效益。
  1.润滑油理化指标的检测
  良好的润滑条件可大大减缓设备的磨损,是延长设备使用寿命的可靠保证。设备首先应做到正确选油,其次是连续跟踪监测其质量指标的变化,三是当润滑油劣变失效时应及时予以更换,为此必须定期对设备用油进行理化指标检测。
  2.污染度测试
  油液经过使用后不可避免地会受到不同程度的污染。检测油液污染程度的方法有定性、半定量和定量三种。具体选用何种方法主要由油液品种、工况条件、对清洁度要求的宽严程度而定,如对柴油机通常用斑点试验法即可满足要求,而对液压油和汽轮机油多数情况下选用颗粒计数仪或污染测试仪进行更精确的测试。
  3.发射光谱分析油液中金属元素含量
  润滑油中经常会有一些金属元素,这些元素的来源有三种途径:一是来自润滑油中的添加剂,如钙、钡、锌、磷等;二是外界污染混入的杂质带进来的,如硅、钡、钠等;三是磨损颗粒中的金属成分,如铜、铬、铅、铁等。设备在投入使用之前应检测新油中金属元素的种类及含量,并做好记录档案。新油中的金属元素主要来自于添加剂,含量是一定的;随着设备运行时间的增长,油中金属元素的种类和数量都会发生相应改变,根据变化趋势可以判断设备产生磨损的部位和状态。
  4.红外光谱分析
  红外光谱的出现使状态监测又增添了一个新的重要手段。一般的理化分析是无法检验的,而利用红外光谱检验是Z直接、Z有效也是Z快捷的方法。红外光谱的主要原理是不同的化合物的分子结构不同,在红外光谱上都会出现特定位置的吸收峰,通过典型峰位和峰面积的积分计算即可对油品的某些特性进行定量的或半定量的分析。近年来由于计算机技术的迅速发展及在红外光谱技术中的普遍应用,大大减少了测试误差。上述红外光谱的突出优势,使其在状态监测中的应用更加日益广泛。
  5.铁谱分析
  铁谱分析在我国是应用Z多、Z普遍的油液分析设备诊断方法之一,它可以直接观察油液中颗粒的尺寸、几何形态、颜色、数量及分布状态等,目前大多采用的是直读式铁谱仪和分析式铁谱仪,近年来旋转铁谱仪和在线式铁谱仪也受到越来越多的注意。
  四、温度监测诊断法
  滚动轴承如果产生了某种损伤,其温度就会发生变化,因此可通过监测轴承温度来诊断轴承故障。该方法应用得很早,在当时在没有其他更好的监测诊断手段的情况下,同时也是由于这种方法简便实用,确实在滚动轴承的巡检中起到了一定的作用。
  但这种方法的致命缺点是当温度有明显的变化时,故障一般都达到了相当严重的程度,因此无法发现早期故障。同时对滚动轴承的温度测量虽然简单,误差一般较大,因此这种方法目前已逐步转变为对滚动轴承的辅助监测诊断手段。
  另外,还可以运用声发射(AE)监测诊断、间隙(游隙)监测诊断法等方法,同样具有较好的效果,基于篇幅这里不做赘述。